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SUMMARY 

The effect of stratification of the fluid in the reservoir on hydrodynamic pressures on dams due to horizon- 
tal, harmonic ground accelerations has been analyzed. It has been found that both the zeroth-order solution, 
which corresponds to the constant-density solution, and the first-order solution have two components in the 
hydrodynamic pressure distribution, an in-phase component and an out-of-phase component which is 90 ° 
lagging. The out-of-phase components vanish in the absence of surface waves, and they become dominant 
when the wave-effect parameter C becomes large. The wave-effect parameter C is defined as g/(to~h), where g 
is the gravitational constant, to the oscillation frequency and h the height of the fluid in the reservoir. The to- 
tal horizontal force on a dam due to harmonic ground excitations has also been presented. 

1. Introduction 

An important  factor in the design o f  dams in seismic regions is the accurate determination of 

the hydrodynamic pressure exerted on the upstream face o f  a dam during earthquakes. This fac- 

tor becomes increasingly critical if the dam under consideration is located on the upstream side 
of  a densely populated community.  

During an earthquake a dam, through its interaction with the foundation and the abutments,  

accelerates into and away from the water in the reservoir, and as a result, the water exerts a 

hydrodynamic  pressure, in excess of  the hydrostat ic pressure, on the dam surface. The period 

of  the ground excitation,  T, during a typical earthquake may range from 0.1 sec to 10 seconds, 

and the amplitude o f  vibration is of  the order of  1 ft.  Therefore the velocity of  a fluid particle 

in the reservoir, which is o f  the order of  w a  with co (=27r/T) being the vibration frequency and 

a the maximum amplitude or displacement o f  vibration of  a dam, is very small in comparison 

with the speed of  sound V s in water (about 4720 ft/sec). Realistic values of  the ratio ~ a / V  s 

range from 10-2 to 10 -4 . Hence we may regard the water in the reservoir as an incompressible 
fluid. 

For an infinitely long reservoir, Westergaard [10] first derived an expression for the hydro- 

dynamic pressure exerted on a two-dimensional dam with vertical upstream face by an incom- 

pressible, inviscid fluid in the reservoir as a result o f  horizontal,  harmonic ground motion in a 

direction perpendicular to the dam. He found that this hydrodynamic pressure is the same as i f  

a certain body o f  fluid, often called the 'added mass', was forced to move back and forth with 

the dam. In a discussion to Westergaard's [10] paper, Von Kzirm~n [5] presented a simple mo- 

mentum-balance method and obtained a distribution of  the added mass, consequently the hydro- 

dynamic pressure, along the vertical upstream face of  a rigid dam, very close to Westergaard's 
results. 
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Since the pioneering work of  Westergaard, a series of investigations has been conducted to 
study the hydrodynamic effect on concrete dams for incompressible and compressible water. 

Kotsubo [6, 7] obtained a general solution for both transient and steady-state hydrodynamic 
pressure acting on a rigid concrete dam. Chopra [1] demonstrated that the hydrodynamic re- 

sponse of compressible water during an earthquake is somewhat different from that due to in- 

compressible water. 
For a dam whose upstream face is not vertical such as an earth dam, Zanger [12] and Zanger 

& Haefeli [13] determined the hydrodynamic pressures experimentally using an electrical ana- 
logue. Recently, Chwang & Housner [4] solved analytically the two-dimensional problem of the 
added-mass effect due to a horizontal acceleration of a rigid dam with an inclined upstream face 

of constant slope by adopting the generalized Von K~rm~in [5] momentum-balance approach. 
They discovered that the normal force coefficient remains practically constant at around 0.5 
for all slopes. In a subsequent paper, Chwang [2] presented an integral solution for the earth- 
quake force on a rigid, sloping dam based on the exact, two-dimensional potential-flow theory. 
His results were compared with those derived from the momentum-balance method, and the two 
methods were found to be in reasonable agreement, especially for the total force exerted on the 

face of  the dam. 
The effect of finite reservoir on the hydrodynamic pressure was investigated by Werner & 

Sundquist [9] and by Chwang [3]. Chwang [3] found that for horizontal accelerations the hy- 
drodynamic pressure force decreases as the size of the reservoir decreases. He also found that the 

effect of vertical acceleration on the pressure force on a dam is simply to adjust the hydrostatic 
pressure by replacing the gravitational constant by an effective gravitational acceleration and this 

is true for any arbitrary shapes of the reservoir. 
When a rigid dam accelerates away from the water, the resulting hydrodynamic pressure on 

its upstream face would become negative. Should this pressure become negatively so large that 
the total absolute pressure (hydrodynamic plushydrostatic and atmospheric pressure) is less than 
the critical cavitation pressure, cavitation could take place on the dam surface. The possibility 

of cavitation at some point on the upstream face of a dam has been discussed by Chwang [3] 

and by Mei et. al. [8]. 
Every stream flowing into the reservoir carries some suspended sediment. Due to gravita- 

tional settling or due to the temperature variation, the density of the fluid in the reservoir is 

often stratified. The objective of this paper is to analyze the effect of stratification on hydro- 
dynamic pressures on dams due to horizontal, harmonic ground accelerations. The dams are as- 

sumed to be rigid and to have vertical upstream faces. Depending on the period of the ground 
excitation T and the depth of  fluid in the reservoir h, surface waves may also play an important 
role in the determination of hydrodynamic pressures. If T = 10 sec and h = 300 ft, then the wave- 
effect parameter C, which is a measure of  relative importance of gravitational surface wave ef- 
fect to the inertial effect due to vibration and which is defined by C = g/(co2h), is about 0.27 
where w = 27r/T and g = 32.2 ft/sec 2 . Hence the presence of surface waves is quite important 
in determining the resulting hydrodynamic pressures on dams. The surface-wave effect has also 

been analyzed in this paper. 
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2. Governing equations 

Let us consider a dam with a vertical upstream face. The y axis points vertically upwards and the 

x axis is perpendicular to the y axis inthe horizontal plane and measured from the upstream face 

of the dam (see Figure 1). The reservoir bottom is the plane y = 0 and the undisturbed water 

surface is at y = h. The dam is assumed to be rigid and subject to a harmonic ground accelera- 

tion of --aw2sin cot in the x direction The displacement and velocity of the dam in the x direc- 

tion corresponding to this ground acceleration are a sin ~ot and a~o cos w t  respectively. The 

maximum displacement of the dam, a, is assumed to be small, so is the deviation of the free sur- 

face from its undisturbed level, r/(x, t). 

Since the fluid in the reservoir is assumed to be incompressible and inviscid, the continuity 

equation becomes 

~u ~v 
Ox + ~ = 0 ,  (1) 

and the linearized incompressibility condition is 

~p' d~ 
--~ +v  ~ y  = 0 ,  (2) 

where u and v are the velocity components in the x and y directions respectively, ~ is the mean 
density which is a function of y only, and p' is the density perturbation. The linearized equa- 
tions of  motion are (see Yih, [ 11 ]) 

~u ~p' 

~ t - Ox ' (3) 

~v ~p' 
~t - Oy P'g ' (4) 

where p '  is the pressure perturbation or the hydrodynamic pressure due to ground acceleration 

and g is the gravitational constant. The mean pressure or the hydrostatic pressure is given by 

M 

Figure 1. Schematic diagram of a dam-reservoir system. 
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y 

= _ J ~gdy  (5) 
h 

such that the mean pressure vanishes at the undisturbed water surface. 

By introducing a stream function ff such that 

a¢, a~ 
u -  Oy ' v = -  bx ' (6) 

equation (1) is satisfied automatically. Since there are surface waves propagating away from the 
dam due to its oscillation, we assume the stream function to be of the form 

t~ = f ( y )  e i ( k x -  tot) , (7) 

where k(= 2rr/3`, 3. being the wavelength) is the wave number. If p' has the same time depen- 

dence as the stream function if, equation (2) gives 

d~  
loop' = v (8) 

ay  

Eliminating p' from equations (3) and (4), and substituting (6), (7), and (8) into the resulting 

equation, we obtain 

~yy (~ ) - k  2 (~+ ¢° 2 ) f = 0 .  (9) 

Equation (9) is the governing equation forf(v) .  

At the reservoir bottom the vertical velocity v vanishes. Hence, by (6) and (7), the boundary 

condition at y = 0 is 

f ( 0 ) = 0 .  (lO) 

On the free surface we require the pressure to vanish. Thus 

~ + p ' = 0  at y = h + r / ( x , t ) .  (11) 

By (3), (6) and (7), we have 

p' = ( ~ / k )  ~ f '  (y) e i ( k x -  wt) (12) 

where i f (y )  denotes df/dy.  Since there is no mean velocity in the x direction, the kinematic 

boundary condition on the free surface is 

Or/ 
v= ~-- at y = h + 7 1 ( x , t ) .  (13) 

By (5), (11), (12), and (13), the linearized boundary condition on the free surface becomes 

f '  (h) - g ( k /w)  2 f ( h )  = O. (14) 
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On the upstream face of  the dam, x = O, we require 

f ' ( y ) = a ~  at x = O .  (15) 

We shall now seek solutions of equation (9) satisfying boundary conditions (10), (14) and (15) 
for a given mean density of the fluid in the reservoir, ~(v). 

3. Constant density solution 

Before we discuss the solution for a stratified fluid, we first study a simple case where the den- 
sity of the fluid is a constant, 

P(Y) = Po, a constant. (16) 

For constant density Po, equation (9) reduces to 

f ' -  k2f= 0 ,  (17) 

where f "  denotes d2f /dy  2 . The complete solution of (17), which includes both positive and ne- 
gative values of k 2 and which satisfies the boundary conditions (10) and (14), yields a stream 
function ~ in the form of 

=Ao sinh koye  i ( G x - ~ t )  + ~ A n sin k n Y e - k n x e  - i t ° t ,  (18) 
n = l  

where ko satisfies 

cosh koh - Ckoh sinh koh = 0 , (19) 

k n satisfies 

c o s k n h + C k n h s i n k n h = O  ( n = 1 , 2 , 3  .... ), (20) 

c :  g/(~2h), (21) 

and A o and A n (n = 1,2, 3, ...) are arbitrary constants. We note that (19) and (21) give the usual 
dispersion relation for surface waves, 

co 2 = gko tanh koh . (22) 

Since the frequency of  the ground excitation, co, is given, equation (22) determines uniquely 
the wave number ko and consequently the wavelength ~o (= 27r/ko) of the surface wave pro- 
duced by the vibration of  the dam. 

By equations (7), (15) and (18), we obtain the constants A o and A n as 
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2acoP o 
A 0 = , (23a) 

k02h(1 + CPo 2) 

2acoP n 
A n= kn2h(l_Cen 2) ( n = 1 , 2 , 3  .... ), (23b) 

where 

Po = sinhkoh and Pn =sinknh (n= 1,2,3,..i). (23c) 

The pressure p '  may be obtained from equations (3), (6) and (18) as 

P'= Poco [A0 coshkoY ei(k°x-wt) - i ~ A n cos knYe-knXe-it°t]. (24) 
n = l  

Taking the real part of  (24), we obtain the hydrodynamic pressure distribution on the upstream 

face of the dam at x = 0 as 

pZv) 
poh(-aco2) = Cpo sin cot * Cqo cos cot, (25) 

where the in-phase (with respect to the given ground harmonic acceleration -aco  2 sin cot) pres- 

sure coefficient Cpo is given by 

Cpo = 2 ~ Pn c°s knY 
n=l kn2h2(1 - CPn z) 

(0 ~<y ~<h), (26) 

and the out-of-phase (90 ° lagging) pressure coefficient Cqo is given by 

2Po cosh koY 
Cq o = -  ko2h2( 1 +CPo 2) (O<~y<~h). (27) 

In Figure 2, the pressure coefficient Cpo is plotted versus the vertical distance y/h for several 
values of  the wave-effect parameter C. The parameter C obtained by (21) is a direct measure of  

the gravity effect to the inertial effect due to oscillation. A small value of C means that the 

gravity effect is negligible in calculating the hydrodynamic pressure. On the other hand, for 

large values of  C, the gravity effect becomes important. Thus the surface waves caused by the 

oscillation of the dam must be taken into account. We note from Figure 2 that at a fixed depth 

of y/h, the hydrodynamic pressure decreases as C increases. Physically it means that surface 
waves become important as C increases and energy is radiated by waves propagating away from 

the dam. When C vanishes, there is no gravity effect on the hydrodynamic pressure, and sur- 

face waves cease to exist. Thus the pressure distribution becomes the same as that given by 
Westergaard [10] and Chwang [2] at C-- 0. For fixed values of C, the hydrodynamic pressure, 

as seen in Figure 2, increases as the height y/h decreases and attaines a maximum value of Cpo 
at the bot tom of the reservoir y = 0. 
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Figure 2. The in-phase pressure distribution on the upstream face of a dam for various values of C = g/ 
(~2h). 

F~. 

where 

The out-of-phase pressure coefficient Cqo is plotted in Figure 3 versus the vertical height 

y/h for several fixed values of  C from 0.05 to 0.4. For fixed values of y/h, the magnitude of 

Cq o increases as C increases; and for fixed values of C, it increases as y/h increases (approaches 

to the undisturbed free surface y/h = 1) as it should be since the out-of-phase component of 

the hydrodynamic pressure is entirely due to the presence of surface waves. When C = 0, Cq o 
vanishes since there are no surface waves then. Comparing Figure 2 with Figure 3, we see that 

the magnitude of Cqo is comparable to that of  Coo. Therefore we cannot neglect the surface- 
wave effect on the hydrodynamic pressure due to earthquakes unless C is very small. 

The total hydrodynamic pressure force on the dam can be found by integrating equation 
(25) as 

h 

f p' v)ay = -poh2aw 2 (CFo sin wt + CLO cos wt),  (28) 
0 

and 

n=l kn3h 3 (1 - CPn 2) ' 
(29) 

2p ° 2 

CLO = -- ko3h a (1 + CPo z) (30) 

In Figure 4 both the in-phase force coefficient CFO and the out-of-phase force coefficient CLo 
are plotted versus the parameter C ranging from 0 to 0.5. At C = 0, the out-of-phase component 

vanishes and the in-phase force coefficient CFO equals to 0.543 which is precisely the value 

given by Westergaard [10] neglecting the surface-wave effect. As the value of Cincreases, CFO 
decreases monotonically while the magnitude of CLo increases. At C = 0.5, CFo has a value of 
0.068 and CLo becomes -0 .4 .  
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phase and out-of-phase force coefficients CF1 and CL1 for a slightly stratified fluid versus the wave-effect 
parameter C = g/(to ~h). 

Journal o f  Engineering Math., Vol. 15 (1981)49-63 



Hydrodynamic pressures on dams 57 

4. Solution for a slightly stratified fluid 

If the mean density of fluid in the reservoir is not constant but a linear function o f y  given by 

P(Y) = po(1 - e y / h )  (0 < e << 1), (31) 

where Po is the density of fluid at the reservoir bottom, we assume that the function f (y )  and 
the wave number k defined in (7) can be expanded in terms of e as 

k= k0 + e~o + ...... (32a) 

f(Y) =fo + ell  + ...... (32b) 

Substituting (31) and (32) into (9) and collecting all e ° terms, we have 

fo"  - ko2fo = 0 .  (33) 

Collecting all terms of the order of  O(e), we obtain a differential equation for f l ,  

fl"-- ko2fl =fo'/h + ko (2~o - koC)fo , (34) 

where C is again defined by equation (21). The boundary condition requires that 

f 0 ( 0 ) = 0  and f l ( 0 ) = 0 .  (35) 

Substituting (32) into (14), we have 

f o ' - C k o 2 h f o = O  at y = h ,  (36a) 

and 

f l '  - CkoZhfl = 2Cko~ohfo at y =h. (36b) 

On the upstream face of the dam, (15) reduces to 

fo'(Y) = a ~  and f l ' (Y)  =0 at x = 0 .  (37) 

The complete solution of (33), including both positive and negative eigenvalues of k02, satis- 
fying boundary conditions (35) and (36a) gives a stream function ~b which is exactly the same 
as that given by equation (18). We note that the positive eigenvalue of k02 gives a real eigen- 
value of ko which satisfies condition (19). However, the negative eigenvalues of k o 2 produce a 
set of infinitely many imaginary eigenvalues ik n (n = 1,2,3 ..... ) which satisfy equation (20). 
The coefficients Ao and A n (n = 1,2,3 ..... ) in (18) are given by equations (23a) to (23c) after 
applying the boundary condition (37). Therefore the zeroth-order solution is exactly the same 
as that given in the previous section. The in-phase and out-of-phase pressure coefficients Cpo 
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and Cqo given by equations (26) and (27) are shown graphically in Figures 2 and 3 respectively. 

The corresponding force coefficients CFo and C L o are shown in Figure 4. 

To find the first-order solution for f l  (y), we note that for positive values of ko 2 the solution 
of equation (34) satisfying the boundary condition (35) is 

f l  + = Bo sinh koy + ½Ao [(y/h) sinh koy + 

(2~o - koC)Y cosh k0Y], (38) 

where k o is given by (19) and Ao given by (23a). Applying equation (36b), we can obtain the 

value of do as 

1 - Cko2h ~ (1 + C -  C2ko2h 2) 
I~o = (39) 

2koh2(C - 1 + C2ko2h 2) 

For negative values of ko 2 which yield a set of infinitely many imaginary eigenvalues ik n 
(n = 1,2, 3 ..... ), the solution of equation (34) satisfying the boundary condition (35) is 

f ( =  "2, {B n sin knY + ~ A  n [(y/h) sin knY + 
n = l  

(2£ n - knC)Y cos knY]} , (4o) 

where the kn'S are given by (20) and the An'S by (23b). The i~ n's are the imaginary counter- 
parts of £o and they are determined by means of condition (36b) as 

I +Ckn2h2(1 +C+C2kn2h 2) 

a n - 2knh2( 1 _ C+C2kn 2h2) (n = 1,2,3 ..... ). (41) 

Therefore the stream function ¢ now becomes 

~O = [Ao sinh koy +efl++...]e i(k° +e% +.. . )x- iwt  

0o 

+ [ Z A n sin knY + e f (  + ...] e - (kn  + e~n + ...) x- i tot  (42) 
n = l  

Applying the boundary condition at the upstream face of the dam, (37), and noting that cosh 

koy and cos knY (n = 1,2,3 ..... ) form a set of orthogonal functions over the interval from 

y = 0 to y = h, we obtain the coefficients Bo and B n in (42) as 

B o = ½A o ( C -  2£o/ko) - [koh (1 + CPo2)] -1 {½Ao [po2/(ko h) 

+ 2kohFoo + 2ko h2 (21~o - koC)Eoo] + Z Am [Din o + kmhFom 
m = l  

+km h2 ( k m C -  2~rn)Emo]} , (43a) 
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B n = ½A n ( C -  2En/kn) - [knh(1 - CPn2)I -' {.4 o [Don 

+ kohFon + koh2(2~o - k o C ) E o n  ] + ~ A m [Dmn +kmhFmn 
m = l  

+kmhZ(km C -  2~m)Emn] } (n = 1 , 2 , 3  ..... ) ,  

where for m = 1,2, 3 ..... and n = 1,2,3 ..... 

Don 
ko(QoQn - 1) + knPoP n 

(ko 2 +kn2)h 

koPoP n - kn(QoQn - 1) 
Dno = 

(ko 2 + kn2)h 

Omn 
kin(1 - QmQn) - knPmPn 

(km 2 _ kn 2 ) h 
(m 4:n), 

Pn 
- ( m  = n ) ,  

2knh 

Eoo 
koh(Po 2 + Qo 2) - PoQo 

4ko2h 2 

Eon 
koQoQ n + (1 - C) knPoP n 

(ko z +knZ)h 

En o 
(1 - C) k o P o P  n - knQoQ n 

(ko 2 + kn2)h 

Emil 
( C -  1)knPmP n - kmQmQ n 

(kin 2 - kn2)h 
(m ¢:n), 

knh (Pn z - Qn 2) + PnQn 

4kn2h 2 
(m = H), 

Foo 
ko2h2 + 2kohPoQ o - po 2 

4ko2h2 

Fon 

(k ° 2 _ kn 2) (1 - QoQn) - 2koknPoPn 

( to  2 + kn2)2h2 

(kin 2 + kn 2) (QmQn - 1) + 2kmknPmP n 

Finn = (kin2 _ kn2)2h 2 (m --/= n), 

(43b) 

(44a) 

(44b) 

(44c) 

(44d) 

(45a) 

(45b) 

(45c) 

(45d) 

(45e) 

(46a) 

(46b) 

(46c) 
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and 

kn2h 2 + 2knhPnO n - P n  2 

4k n 2h~ 
(m = n), (46d) 

Po = sinh koh , Pn = sin knh , (23c) 

Qo = cosh koh , Qn = cos knh. (23d) 

The hydrodynamic pressure p '  on the upstream face of  the dam at x = 0 may be obtained from 

equations (3), (6) and (42), thus 

p' = wp o (1 - ey/h) {(k o + e£ o + ...)-1 (koA ° cosh koY 

o o  

+ edfa+/ay + ...) cos oat - Y~ [(k n + c £  n + ...)-1 
n = l  

( k ,A  n cos knY + ed f f /dy  + ...) sin oat]}, (47a) 

or in dimensionless form 

p '  

Poh(-aoa2) - (Cpo + eCpl + ...) sin oat + (Cqo + eCql + ...) cos oa t .  (47b) 

The zeroth-order in-phase and out-of-phase pressure coefficients Cpo and Cqo are given by 

1o0 ! i ! 

0 . 6  

Y 
--ff 

0 . 4  

0 . 2  

0 a 
-0 .4 -0.3 -0 .2 -0.1 0 0.1 0.2 0 .3  .4 

Cp, 
Figure 5. The first-order in-phase pressure distribution on the upstream face of a dam for various values of 
C = g/(~o2h). 
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equations (26) and (27) respectively. The first-order in-phase pressure coefficient Cpl is given by 

sin knY 
2awhCpl = n=l ~ ~(2Bn - CAn)C°sknY +An [ knh 

y cos knY 
+ (knC - 2~n)y sin knY]}, (48) 

h 

where A n is determined by (23b), B n by (43b) and £n by (41). Figure 5 shows the numerical 

values of  Cpl as determined by (48) versus the height y/h for fixed values of C from C= 0 to 

C = 0.3. We note from Figure 5 that for fixed values of C, Cpl is negative at the reservoir bot- 

tom (V = 0). It decreases further as y/h increases until it reaches a minimum value, then it in- 

creases as y/h increases. At the undisturbed free surface y = h, the pressure coefficient Cp 1 be- 

comes positive except the case of C = 0 in which Cpl vanishes. For fixed values ofy/h,  Cpl in- 
creases as C increases as a result of  the surface-wave effect. However, due to stratification of the 

fluid in the reservoir, Col remains negative over a large range of height y/h except the region 

close to the free surface. 
The first-order out-of-phase pressure coefficient Cql in (47b) is given by 

2aeohCql = (CA o - 2Bo) cosh koY - A o [ - -  

y cosh koY 
+ (2£ o koC)Y sinh koY], 

sinh koY 

koh 

(49) 

where A o is given by (23a), B o by (43a) and ~o by (39). The numerical values of Cq I are plotted 

in Figure 6 versus the vertical height y/h for several fixed values of C from C = 0.05 to C = 0.4. 

|*O 1 T ~ I I 
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0.6  

Y 
h 

0 .4  

0 . 2  

I 
o o.I 0.2 0.3 0.4 o.5 o.~ o.7 o.8 

Cql 

Figure 6. The first-order out-of-phase pressure distribution on the upstream face of a dam for various 
values of C = gl(~o~h). 
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For C = 0, Cql is identically equal to zero. As Cincreases, the wave effect becomes important, 

hence Cql increases for fixed height ofy/h.  For any given values of  C, Cql increases with in- 

creasing height y/h, it reaches a maximum value at the undisturbed free surface y = h. 

The total hydrodynamic pressure force on the dam may be obtained by integrating equation 
(47b) to give 

h 

F= f p' (y)dy =-Poh=aco 2 [(CFo "1" eCF1 + ...)sin cot 
o 

+ ( Q o  + e Q l  + ...) cos cot], (50) 

where the zeroth-order in-phase and out-of-phase force coefficients CFo and C L 0 are given by 
equations (29) and (30) respectively. The first-order in-phase force coefficient CF1 may be ob- 
tained from (48) as 

e. o o  

2acohCF1 = Z {[2B n - (1 - 2 C -  CUkn2h2)An] ' 
n= 1 knh 

2A n 
+ ~ [ 1 - ( 1  +Ckn=ha)f~nhPn]}, 

kn2h ~ 
(51) 

and the first-order out-of-phase force coefficient CLI may be obtained from (49) as 

eo 
2acohCL1 = [(1 - 2C+ C2ko2h2)Ao - 2Bo] - -  

koh 

2A o 
+ - -  [1 - (Cko:h ~ - 1) £oheo]. 

ko:h ~ 
(52) 

In obtaining (51) and (52), we have made use of  relations (19) and (20). Both force coefficients 

CFI and CL1 are also plotted in Figure 4 versus the wave-effect parameter C from C = 0 to 
C = 0.5. In the absence of wave effect, that is when C = 0, the out-of-phase force coefficient 

CL1 vanishes while the in-phase force coefficient CF1 has a negative value o f -0 .314 .  As Cin- 

creases, CL1 increases monotonically from zero and CF1 also increases monotonically, however 

CF1 remains negative throughout the range of C from zero to 0.5. At C--- 0.5, CL1 has a value 

of 0.225 and CF1 has a value of  -0.044.  

5. Conclusions 

The effect of  stratification on hydrodynamic pressures on a dam due to a horizontal, harmonic 
ground acceleration has been analyzed. It has been found that even for the constant-density 

solution the hydrodynamic pressure has an out-of-phase component as well as an in-phase com- 
ponent with respect to the given ground excitation. The out-of-phase component vanishes 

when the wave-effect parameter C, defined by C = g/(co~h), vanishes. For any fixed height, the 
zeroth-order in-phase hydrodynamic pressure distribution on the dam decreases as C increases, 
while the magnitude of the zeroth-order out-of-phase pressure component increases with an in- 
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crease o f  C. Thus the effect of  surface waves is to reduce the in-phase pressure component  and 

at the same time to increase the out-of-phase pressure component  which is 90 ° lagging. For  

fixed values of  C, the in-phase pressure coefficient increases with depth beneath the water sur- 

face and always attaines a maximum value at the bo t tom of  the reservoir. On the other hand, 

the magnitude of  the out-of-phase component  increases towards the free surface with maximum 

values occurring on the free surface. 

The first-order pressure distr ibution due to the stratification of  the fluid in the reservoir also 

has two components ,  an in-phase component  and an out-of-phase component .  The out-of-phase 

component  vanishes in the absence o f  surface waves. For  any fixed height, both  pressure com- 

ponents increase with an increase of  C. For  fixed values of  C, the out-of-phase pressure in- 

creases monotonical ly towards the free surface, while the in-phase pressure decreases at first, 

then increases towards the free surface. 

The total  horizontal  force on a dam due to harmonic ground excitations has also been 

presented. It is shown that  both  the zeroth-order solution and the first-order solution have in- 

phase and out-of-phase components,  and the out-of-phase components become dominant 

when C is greater than 0.3. 
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